# Update in Orthopaedic Trauma

Annop Sikongkaew, MD

Orthopaedic Trauma Maharaj Nakhon Si Thammarat Hospital

# **Update in Orthopaedic Trauma**Outline

- Pelvic fracture
- Spinal cord injury
- Open fractures
- Compartment syndrome

> Mortality rate 15-25% for CLOSED fracture



#### **Associated injuries**



- APC III Circulatory shock (67%)
- Vertical shear Hypovolemic shock, High mortality 25 %

Gross hematuria or UA RBC > 30 - 50 = GU Injury

#### Pelvic hemorrhage



#### Sources of bleeding

- 90%: Venous plexus + Bone
- 10% : Artery
- Venous plexus most common
- Internal iliac artery
  - Superior gluteal artery
  - Corona mortis artery
- APC and Vertical shear: greater risk of hemorrhage

### Physical examination

#### Malrotation of lower limb





FIGURE 44-2 Clinical photograph showing external rotation and leg length discrepancy in a patient with an open book pelvic fracture.

### Physical examination







#### Young and Burgess classification

### Lateral compression

(Internal rotation)

### AP compression

(External rotation)

### Vertical shearing



### Initial management

| WSES<br>Grade | Description | Young-Burgess<br>Classification | Hemodynamic<br>Status | Mechanics | Early Treatment                                                                               |
|---------------|-------------|---------------------------------|-----------------------|-----------|-----------------------------------------------------------------------------------------------|
| I             | Minor       | APC I LCI                       | Normal                | Stable    | Routine evaluation                                                                            |
| II            | Moderate    | LC II/III APC II/III            | Normal                | Unstable  | Pelvic binder, possible angioembolization; possible external fixation or operative management |
|               | Moderate    | VS                              | Normal                | Unstable  | Pelvic binder, possible angioembolization; operative management                               |
| IV            | Severe      | Any                             | Shock                 | Any       | Pelvic binder, perperitoneal packing, mechanical fixation, REBOA, angioembolization           |

LC, lateral compression; APC, Anterior posterior compression; VC, Vertical shear; REBOA, Retrograde endovascular balloon occlusion of the aorta.

#### Initial management



- ATLS Primary survey
- Life threatening injury
- Hemodynamic and Mechanical unstable
- \*\* Hemodynamic unstable SBP < 90 mmHg</li>
  - Identify cause emergently
  - Pelvic binder Routine

### Pelvic binder



Recommend by ATLS for "Undiagnosed pelvic injury"

- Overreduction in LC type: Bladder/ Vessel injury
  - No study confirming these hazard
- Removed as soon as hemodynamic stable (24 48 hr.)
- Landmark
  - Center of Greater trochanter
  - Adduction and Internal rotation

#### **Purpose**

- 1) Clot formation by stabilize pelvic injury
- 2) Tamponade effect by reduce pelvic volume
- 3) Autotransfusion by return Blood from lower extremities



### Pelvic binder

1. สอดผ้าให้เป็นแผ่นใต้กันผู้ป่วยโดยผ้าควรมีความ กว้างอย่างน้อย 10 นิ้ว โดยให้บริเวณ greater trochanter อยู่กึ่งกลางระหว่างขอบบนและล่างของผ้า



2. ให้ผู้ปฏิบัติการคนแรกดึงผ้าจากด้านตรงข้าม เข้าหาตัวดังรูปค้างไว้



### Pelvic binder

3. ให้ผู้ปฏิบัติการอีกคนดึงชายผ้าอีกด้านพับทบเข้า มาเข้าหาตัวดังรูปโดนทั้งสองคนดึงผ้าในแนวตรงข้ามกันให้ แน่นพอประมาณ



4. นำ Kocher's clamp หนีบผ้าส่วนบนและล่างให้ ชายผ้าสองด้านอยู่ด้วยกัน



ผู้ปฏิบัติการปล่อยผ้า



# Innitial management

### Hemodynamic unstable

- Intraperitoneal hemorrhage control
- External stabilization
- Pelvic packing
- Angiography
  - Contrast extravasation on CT
  - Other source have been ruled out
  - Patient age > 60 year







- Cause of injury: Motor vehicle crash (42%)
- Most common : Incomplete tetraplegia
- Most common site: Cervical spine (>50%)
- Cervical spine injuries carry higher rates of mortality and morbidity



| Relative Frequencies of Types of SCI |     |  |  |
|--------------------------------------|-----|--|--|
| Common types of SCI Percentag        |     |  |  |
| Incomplete tetraplegia               | 31% |  |  |
| Complete paraplegia                  | 25% |  |  |
| Complete tetraplegia                 | 20% |  |  |
| Incomplete paraplegia                | 19% |  |  |

SCI = Spinal cord injury

#### Spinal shock

- Temporary dysfunction spinal cord
- Loss reflexes sensory motor function caudal to the level of injury
- Bradycardia and hypotension (due to loss of sympathetic tone)
- Absent bulbocavernosus reflex
- Recovery 24-48 hrs (can persist for week or month)
- No specific treatment

### Spinal shock





Return of this reflex = out of spinal shock

#### Sacral Sparing

- Big toe flexion (S1)
- Perianal Sensation (S4-5)
- Voluntary rectal sphincter contraction (S4)



Present of sacral sparing = incomplete cord injury = Good prognosis

### Neurogenic shock

- Loss of vasomotor tone and cardiac sympathetic innervation above the T6 level cord injury
- Hypotension and bradycardia
- Low blood pressure can exacerbate primary cord injury due to decreased spinal cord perfusion

Above T6

|                     | Neurogenic Shock         | Hypovolemic Shock |  |
|---------------------|--------------------------|-------------------|--|
| Etiology            | Loss sympathetic outflow | Loss blood volume |  |
| BP                  | Hypotension              | Hypotension       |  |
| Heart rate          | Bradycardia              | Tachycardia       |  |
| Temp                | Warm                     | Cold              |  |
| Urine output Normal |                          | Low               |  |
| Treatment Dopamine  |                          | Fluid volume      |  |

May be combined, DON'T miss!

Consider invasive hemodynamic monitoring



- ASIA score
- Neurologic level
- ASIA grade

### ASIA grade

| A : complete           | No motor or sensory function             |  |  |
|------------------------|------------------------------------------|--|--|
| B : sensory incomplete | Sensory preserve, Sacral sparing +       |  |  |
| C : motor incomplete   | Motor power <3<br>(>50% of key muscle)   |  |  |
| D : motor imcomplete   | Motor power >=3<br>(>=50% of key muscle) |  |  |
| E : normal             | Motor and sensory function are normal    |  |  |

|            | Motor power        | Rt | Lt | Sensory impaired : middle finger C7,                             |  |
|------------|--------------------|----|----|------------------------------------------------------------------|--|
| <b>C</b> 5 | Elbow flex         | 5  | 5  | medial forearm T1, body, leg                                     |  |
| C6         | Wrist extend       | 5  | 5  | Sacral sparing preserved                                         |  |
| <b>C</b> 7 | Elbow extend       | 2  | 2  |                                                                  |  |
| С8         | Hand grip          | 2  | 2  |                                                                  |  |
| T1         | Finger abduct      | 2  | 2  | Neurological level injury<br>= levelต่ำสุดที่ motor&sensory ปกติ |  |
| L2         | Hip flex           | 3  | 3  | = C6                                                             |  |
| L3         | Knee extend        | 3  | 3  | มี 5/8 levelที่ power >=3 ( >50%)                                |  |
| L4         | Ankle dorsiflex    | 3  | 3  | คังนั้น ASIA = D                                                 |  |
| L5         | Toe dorsiflex      | 3  | 3  | Diagnosis: C 6 central cord injury                               |  |
| <b>S1</b>  | Ankle plantar flex | 3  | 3  | ASIA grade D                                                     |  |

# Spinal cord syndrome

| Type              | Incidence Mechanism |                           | Clinical                                              | Prognosis |
|-------------------|---------------------|---------------------------|-------------------------------------------------------|-----------|
| Central           | Most<br>common      | Hyperextension in elderly | Weak upper > lower                                    | Fair      |
| Anterior          | Common              | Hyperflextion             | Weak lower > upper Preserve deep touch, propioception | Poor      |
| Brown-<br>Sequard | Rare                | Penetrating,<br>rotation  | Loss ipsilateral motor Loss contralateral pain &temp  | Good      |
| Posterior         | Very rare           | Extension                 | Loss propioception<br>preserve motor<br>sensory       |           |



# Spinal cord syndrome

|                       | Conus medullaris <cord></cord>                   | Cauda equina <root></root>           |
|-----------------------|--------------------------------------------------|--------------------------------------|
| Presentation          | Sudden ,bilateral                                | Gradual, unilateral                  |
| Reflexes              | Diminished at the level<br>Brisk below the level | Diminished                           |
| Radicular pain        | -                                                | +                                    |
| Back pain             | More                                             | Less                                 |
| Impotence             | Frequent                                         | Absent                               |
| Numbness              | Symmetrical                                      | Asymmetrical                         |
| Motor                 | symmetrical                                      | Asymmetrical                         |
| Sphincter dysfunction | Present Early Urinary and fecal incontinence     | Present later Only urinary retention |





#### **Treatment**

#### **Early stabilization**

- Immediate reduction
- Keep MAP 85-90 mmHg in first 7day
- SBP > 100mmHg
- Keep oxygen 100%

#### **Definite treatment**

 Decompression within 24 hours is associated with improved neurologic recovery (only in stable patient)

Minimize secondary spinal cord injury

## Methylprednisolone

- Risk > Benefit
- Insufficient evidence to support









## Open Fractures

#### **Definition**

 " as an injury where the fracture and the fracture hematoma communicate with the external environment through a traumatic defect in the surrounding soft tissues and overlying skin"



# Open Fractures

Usually >10 cm

Usually >10 cm

III B

III C

#### **Gustilo-Anderson Classification**

High

High

#### Gustilo and Anderson's Classification84,85 **TABLE 10-6 Level of Contamination** Wound **Soft Tissue Injury Type Bone Injury** Minimal Simple, minimal comminution Clean <1 cm long Moderate Ш Moderate; some muscle damage Moderate comminution >1 cm long III A Severe with crushing Usually communited; soft tissue cover-Usually >10 cm High age of bone possible

Very severe loss of cover

Very severe loss of cover and

vascular injury requiring repair

Gustilo reported the infection rate
Type I 1.9%
Type II 8%
Type III 41 %

Bone cover poor; usually requires soft

Bone cover poor; usually requires soft

tissue reconstructive surgery

tissue reconstructive surgery

#### Initial management

- Gentle realignment of the limb, followed by splinting
- Early removal of contaminants using sterile instruments
- Covering the wound with a moist, sterile dressing
- Early IV antibiotics administered
- Tetanus prophylaxis
- Evaluating the soft tissue, circulation, and neurological status

#### Preventive antibiotic regimens

|                                                               | Absence of potential soil or water contamination                                                                                                      | Presence of potential soil<br>contamination (in absence of<br>water contamination)                                       | Presence of water contamination                       |  |  |  |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
| Gustilo-Anderson fracture type I or II                        |                                                                                                                                                       |                                                                                                                          |                                                       |  |  |  |
| Preferred<br>regimen                                          | Cefazolin 2g IV Q8H                                                                                                                                   | Cefazolin 2 IV Q8H PLUS<br>metronidazole 500mg IV Q8H<br>or<br>Ceftriaxone 2g IV Q24h PLUS<br>metronidazole 500mg IV Q8H | No modifications needed to recommendations to left    |  |  |  |
| Alternative<br>regimen for<br>beta-lactam<br>hypersensitivity | Vancomycin • Loading dose 20mg - 35mg/kg • Maintenance dose 15mg–20mg/kg Q8-12H (dose based on patient- specific factors and adjust to trough levels) | Clindamycin 900 mg IV Q8H                                                                                                | No modifications needed<br>to recommendations to left |  |  |  |

Gustilo 1 or 2



#### Gustilo 3

#### Time to Antibiotic Administration

- Delaying antibiotic treatment beyond 3 hours postinjury increases the risk of infection.
- Ideally, antibiotics should be administered within 1 hour of arrival to the emergency department.

#### **Definition**

- Elevation of intracompartment pressure causing reduction of tissue perfusion (ischemia) and cell death (necrosis)
- Extensive muscle and nerve death > 4 hours



#### **Etiology**

#### 1. Increased compartmental content

 Bleeding, fracture, vascular injury, trauma, burn, exercise, snake bite



#### 2. Decreased compartmental size

Tight dressing, localized external pressure, closure of fascial defect



#### **Risk factor**

- Youth has been found to be the most important risk factor
- 3 times greater in the patients who are under 35 years old

#### Risk Factors for Development **TABLE 29-3** or Late Diagnosis of Acute **Compartment Syndrome Altered Pain Perception** Demographic Youth Altered conscious level Tibial fracture Regional anesthesia High-energy forearm fracture Patient-controlled analgesia High-energy femoral diaphyseal Children fracture Associated nerve injury Bleeding diathesis/anticoagulants Polytrauma with high base deficit, lactate levels, and transfusion requirement

#### Clinical sign and symptoms

#### The 5P's

- 1. Pain: Out of proportion with passive stretch (most significant early sign)
- 2. Pressure: Tense swelling (early consistent finding)
- 3. Paresthesia: Sensory deficit (usually Late)
- 4. Paralysis: Muscle weakness (very late sign)
- 5. Pulselessness: The present of distal pulse does not exclude compartment syndrome

#### Diagnosis

- 1. Absolute pressure theory: closed to capillary pressure
  - > 30 mmHg as absolute number (Mubarak et al.)
- 2. Pressure gradient theory: relative ischemia
  - < 30 mmHg (Diastolic pressure compartment pressure; McQueen)



#### Compartment pressure measurement

#### Whiteside method





### **Urgent fasciotomy**

- Indication
  - o  $\Delta$ P ≤ 30 mmHg more than 2 hours
- Fasciotomy shouldn't be performed based on a single pressure need differential pressure over time





# Thankyou

